In today's blog, I will go over some basic trigonometric properties that I use in my proof for the Fundamental Theorem of Algebra.
Lemma 1: [(cos α + i sin α) ]a = cos (a*α) + i sin (a*α)
Proof:
(1) From Euler's Formula, we know that:
eiα = cos α + i sin (α)
(2) So, we see that:
(eiα)a = ei*a*α
(3) Finally,
ei(a*α) = cos (a*α) + i sin (a*α)
QED
Lemma 2: (cos α + i sin α)(cos β + i sin β) = cos(α + β) + i sin(α + β)
Proof:
(1) Again, using Euler's Formula, we have:
eiα = cos α + i sin α
eiβ = cos β + i sin β
(2) So multiplying these two values together gives us [see here if a review of exponents are needed]:
(eiα)(eiβ) = eiα + iβ = ei(α + β)
(3) Finally,
ei(α + β) = cos(α + β) + i sin(α + β)
QED
No comments :
Post a Comment