I thought it would be useful to review some basic equations. These are presented as a series of lemmas.
Lemma 1: (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a + b)(a + b) = a(a + b) + b(a + b) = a2 + ab + ab + b2 = a2 + 2ab + b2.
QED
Lemma 2: (a + b)(a - b) = a2 - b2
(a + b)(a - b) = a(a - b) + b(a - b) = a2 - ab + ab - b2 = a2 - b2
Corollary 2.1: a4 - b4 = (a - b)(a + b)(a2 + b2)
By Lemma 2, a4 - b4 = (a2 - b2)(a2 + b2)
Applying Lemma 2 again, gives us:
a4 - b4 = (a - b)(a + b)(a2 + b2)
Lemma 3: a3 + b3 = (a + b)(a2 - ab + b2)
(a + b)(a2 - ab + b2 ) = a(a2 - ab + b2) + b(a2 - ab + b2) =
a3 - a2b + ab2 + a2b -ab2 + b3 = a3 + b3
Corollary 3.1: a3 - b3 = (a - b)(a2 + ab + b2)
Let b' = -b so that a3 - b3 = a3 + (b')3
By Lemma 3: a3 + (b')3 = (a + b')(a2 - ab' + (b')2) = (a - b)(a2 + ab + b2)
QED
Lemma 4: a5 + b5 = (a + b)(a4 - a3b +a2b2 - ab3 + b4)
(a + b)(a4 - a3b +a2b2 - ab3 + b4) =
=a(a4 - a3b +a2b2 - ab3 + b4) + b(a4 - a3b +a2b2 - ab3 + b4) =
=a5 - a4b + a3b2 - a2b3 + ab4 + a4b - a3b2 + a2b3 - ab4 + b5 =
=a5 + b5
QED
Lemma 4: n ≥ 5 → an + bn = (a + b)(a(n-1) - a(n-2)b + ... - ab(n-2) + b(n-1))
(a + b)(a(n-1) - a(n-2)b + ... -ab(n-2) + b(n-1)) =
a(a(n-1) - a(n-2)b + a(n-3)b2... -ab(n-2) + b(n-1)) +
b(b(n-1)+a(n-1) - a(n-2)b + ...+a2b(n-3) -ab(n-2)) =
an - a(n-1)b + a(n-2)b2 + ... -a2b(n-2) + ab(n-1) +
bn + a(n-1)b - a(n-2)b2 + ... + a2b(n-2) - ab(n-1) =
an + bn
QED
Lemma 5: a - b divides an - bn
Proof:
(1) Let n = be the highest number where this is true.
(2) We know that n is at least 2 since a2 - b2 = (a - b)(a + b)
(3) To complete this proof, we need to show that a - b divides an+1 - bn+1
(4) We know that (a-b)(an) = an+1 - anb and we know that (a-b)(bn) = abn - bn+1
(5) So that an+1 - bn+1 - (a - b)(an) - (a-b)(bn) = anb - abn = ab(an-1 - bn-1)
(6) So that:
an+1 - bb+1 = (a-b)(an + bn) - ab(an-1 - bn-1)
(7) Since n ≥ 2, we know that a-b divides an-1 - bn-1.
QED
3 comments :
In Corollary 2.1:
There is a missing bracket on the end of (a2 - b2)(a2 + b2
In Lemma 5:
The text get very small...:-)
Rob
Hi Rob,
Fixed both issues. Thanks very much for posting! :-)
-Larry
There are a number of very important skills and techniques required to be an outstanding manager of people and projects. One of the most important is mastering how to create speed of execution when managing a project or assignment. See more do my math homework
Post a Comment