Here are some basic lemmas that are used by the proof for Fermat's Last Theorem: n=5.
Lemma 1: (p+q)5 + (p-q)5 = 2p(p4 + 10p2q2 + 5q4)
(1) Using the Binomial Theorem:
(p + q)5 = p5 + 5p4q + 10p3q2 + 10p2q3 + 5pq4 + q5
(p - q)5 = p5 - 5p4q + 10p3q2 - 10p2q3 + 5pq4 - q5
(2) Adding these two values together gives us:
2p5 + 20p3q2 + 10pq4 = 2p(p4 + 10p2q2 + 5q4)
QED
Lemma 2:
If:
t = q4 + 50q2r2 + 125r4
u = q2 + 25r2
v = 10r2
Then:
t = u2 - 5v2
(1) u2 = (q2 + 25r2)2 = q4 + 50q2 r2 + 625r4
(2) -5v2 = -5(10r2)2 = -500r4
(3) (q2 + 25r2)2 + -5(10r2)2 = q4 + 50q2 r2 + 625r4 + -500r4 = q4 + 50q2 r2 + 125r4
QED
No comments :
Post a Comment